The Effect of H_2O_2 Interference in Chemical Oxygen Demand Removal During Advanced Oxidation Processes

*Afsane Chavoshani1, Aezam Rostami2, Fahimeh Golzari2, Ameneh Gholina2

1) Research Center, Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
2) Research Center, Department of Environmental Health Engineering, School of Health, Gonabad University of Medical Sciences, Gonabad, Iran

*Author for Correspondence: Chavoshani.afsane@yahoo.com
Received: 3 Oct. 2015, Revised: 15 Feb. 2016, Accepted: 2 Apr. 2016

ABSTRACT
Hydrogen peroxide (H_2O_2) is one of the most oxidants in AOPs. By H_2O_2 dissociation, hydroxyl radical with a standard oxidation potential of 2.7 is produced. It is reported H_2O residual in AOPs has been led to interference in chemical oxygen demand (COD) test and it is able to hinder biological treatment of waste water. Because of high mixed organic load of solid waste leachate, this study investigated effect of H_2O_2 interference in COD removal from solid waste leachate. In this study effect of parameters such as pH (3.5,7,12), H_2O_2 dose (0.01, 0.02, 0.03, 0.04 mol l$^{-1}$), and time reaction(10,20,30,40,50,60 min) evaluated on H_2O_2 interference in COD removal from solid waste leachate. Optimum pH and concentration were 3 and 0.02 mol l$^{-1}$ respectively. With increasing reaction time, COD removal was increased. The false COD obtained between 0.49mg per 1mg of H_2O_2. The average of COD removal by H_2O_2 for 60 min was 6.57%. Also reaction rate of this process was 0.0029 min$^{-1}$. The presence of H_2O_2 leads to overestimation of COD values after reaction time because it consumes the oxidation agent. The extent of H_2O_2 interference in COD analysis was proportional to the remaining H_2O_2 concentration at the moment of sampling.

Key Words: Hydrogen peroxide, Interference, COD, Leachate, Gonabad

INTRODUCTION
Many advanced oxidation processes are based on addition of hydrogen peroxide (H_2O_2) with the aim of producing hydroxyl radicals to oxidize organic contaminants in water and waste water [1-3]. H_2O_2 is one of the most oxidants in AOPs. By H_2O_2 dissociation, hydroxyl radical with standard oxidation potential (Eo) of 2.7 V is produced [1, 2]. Hydrogen peroxide is a multiuse oxidant applied in many treatment systems. It is one of the inexpensive oxidizers usually used in residual waters, with high oxidizing strength, available and water-soluble[3]. H_2O_2 can be used to remove cyanides, for removing chromium (VI), for oxidation of sulfur compounds, and elimination of some inorganic nitrogen compounds. Hydrogen peroxide can be applied directly or with a catalyst. In spite of its advantages, it is reported H_2O_2 residual in AOPs has been led to interference in chemical oxygen demand (COD) test and it is able to hinder biological treatment of waste water. In laboratory large scale, amount of H_2O_2 residual can be estimated 70 to 80% of its initial concentration and allocates to itself high mole concentration [3], thus this leading to overestimation of the COD measurements. According to previous studies, amount of hydrogen peroxide interference is depending on the type of pollutants. For example some researchers, for determination of H_2O_2 interference, have been suggested $8.5\text{mgCOD}
\frac{\text{mmolH}_2\text{O}_2}{\text{mmolH}_2\text{O}_2}$ and $16\text{mgCOD}
\frac{\text{mmolH}_2\text{O}_2}{\text{mmolH}_2\text{O}_2}$ for pure water, synthetic waste water and livestock waste water, respectively [3]. The number of studies investigated H_2O_2 interference on waste water and solid waste leachate is very low [4-6] and mostly have not been referred to the H_2O_2 interference [7]. It seems to better know of H_2O_2 interference in COD test, solid waste leachate is a suitable option, because it is containing refractory organic and inorganic compounds. Solid waste leachate is a high strength wastewater with different organic and inorganic wastes, exhibiting acute and chronic toxicity [8, 9]. Leachate composite is depending on the nature of generated solid waste, soil characteristic, precipitation amount and leachate age [10]. The age of young leachate and mature leachate is ≤2 years and ≥5 years, respectively. With increasing leachate age, concentration of refractory compounds increases [11]. Therefore, purpose of this paper was studying interference effects of H_2O_2 on chemical oxygen demand removal during advanced oxidation processes.
MATERIALS AND METHODS

This paper was performed at Gonabad University of medical sciences in 2015. Required leachate for experiments prepared from self-service of Gonabad University of medical was collected in a plastic bottle and kept in temperature of 4°C until the performance of experiments.

Leachate was diluted in 1/100 ratio. H$_2$O$_2$ with purity of 30% was purchased from Merck. Solutions were prepared with deminized water. In the first, some leachate characteristics according to table 1 were detected.

Table 1. The comparison of studied leachate characteristics with similar sample of other studies.

<table>
<thead>
<tr>
<th>Leachate Characteristics</th>
<th>Studied sample</th>
<th>Similar sample[12]</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5.7</td>
<td>7.5</td>
</tr>
<tr>
<td>Total hardness(mg/CaCO$_3$)</td>
<td>7000</td>
<td>950-11000</td>
</tr>
<tr>
<td>Magnesium hardness(mg/CaCO$_3$)</td>
<td>2600</td>
<td>200-6000</td>
</tr>
<tr>
<td>Calcium hardness(mg/CaCO$_3$)</td>
<td>4400</td>
<td>750-7000</td>
</tr>
<tr>
<td>Methyl orange alkalinity(mg/CaCO$_3$)</td>
<td>7000</td>
<td>5185</td>
</tr>
<tr>
<td>Phenol italyn alkalinity(mg/CaCO$_3$)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total alkalinity</td>
<td>7000</td>
<td>5185</td>
</tr>
<tr>
<td>TKN(mg/l)</td>
<td>806</td>
<td>50-5000</td>
</tr>
<tr>
<td>Total COD(mg/l)</td>
<td>61000</td>
<td>6000-60000</td>
</tr>
</tbody>
</table>

In this study effect of parameters such as pH (3,5,7,12), H$_2$O$_2$ dose (0.01, 0.02, 0.03, 0.04 mol/l) and time reaction (10,20,30,40,50,60 min) evaluated on H$_2$O$_2$ interference in COD removal during oxidation process [3].

After addition of H$_2$O$_2$ to leachate and reaction time intervals 10, 20, 30, 40, 50, 60 min, COD of samples was detected according to standard method [1]. In the end, obtained results were analyzed with Excel software.

Concentration of residual H$_2$O$_2$ was examined by the iodometric method. The existence of H$_2$O$_2$ increased the COD value since it acted as a reductant, especially in the chromate-based examination of COD [4]. The COD measured in the samples after reaction time was converted to prevent the interference of H$_2$O$_2$ on COD analysis (Eqs. (1,2) [4].

COD = CODm – f[H$_2$O$_2$] \hspace{1cm} (1)

\[
f = 0.4706[H_2O_2] - 4.06 \times 10^{-2}[H_2O_2]^2 \hspace{1cm} (2)
\]

Where COD, COD value before reaction (mg/l); CODm, measured COD after reaction (mg/l); f, a constant; [H$_2$O$_2$]; concentration of residual H$_2$O$_2$ (mg/l).

RESULTS AND DISCUSSION

Effect of pH

pH has an important role in the mechanism of OH· production in AOPs. Fig. 1 depicts the effect of pH on COD removal. pH range was selected from 3 to 12 and H$_2$O$_2$ concentration was fixed at 0.02 mol/l. The minimum COD concentrations obtained before and after reaction at pH=3 were 3600 and 50000 mg/l respectively. Also, at this pH, maximum COD removal was 20%. False COD concentrations (COD changes before and after reaction) at pH 3, 5, 7, 9 and 12 were 14000, 15680, 16800, 17920 and 20160 mg/l respectively. Therefore, pH=3 was found at optimum pH. According to results of Shabihimam et al., hydrogen peroxide alone at pH2 was able to remove of TOC and color from municipal landfill leachate with efficiency of 39% and 34% respectively [7]. Also, results of Pieczykolan confirm our results [4]. It seems that at pH higher than 7, H$_2$O$_2$ is unstable and decomposes to give O$_2$ and H$_2$O (Eq. (3)) and therefore lose oxidizing properties of H$_2$O$_2$ [13].

\[
2H_2O_2 \rightarrow 2H_2O + O_2 \hspace{1cm} (3)
\]

Fig. 1. Effect of pH on COD changes from solid waste leachate (pH= 3, 5, 7, 9, 12, initial COD = 36000 mg/l, H$_2$O$_2$ dose = 0.02 mol/l, reaction time = 30 min)

Effect of H$_2$O$_2$ concentration

In this step, pH was kept constant at 3. Dose of hydrogen peroxide was chosen 0.01, 0.02, 0.03 and 0.04 mol/l. Amount of COD removal of this concentration range was 7, 15, 3 and -15% respectively and false COD concentrations (COD changes before and after reaction) for these concentrations were 20765, 14415, 16233 and 14000 mg/l respectively.
18831 mgL⁻¹. Therefore, optimum dose of hydrogen peroxide was found as 0.02 molL⁻¹. At higher doses, there was no further increase in COD removal, because with respect to Eq. (4), under high H₂O₂ concentration, scavenging of OH⁻ radicals is happened to produce HO₂⁻ radicals [14].

$$H_2O_2 + OH^- \rightarrow H_2O + HO_2^-$$ \hspace{1cm} (4)

Also, according to previous studies, the residual amounts of H₂O₂ consume K₂Cr₂O₇, according to Eq.5, leading to an increase in COD amount [5, 13]. In this reaction, a green color appears. It is mostly owing to the Cr³⁺ ions formed by the reduction of potassium dichromate [15].

$$K_2Cr_2O_7 + 3H_2O_2 + 4H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 7H_2O + 3O_2$$ \hspace{1cm} (5)

Effect of Reaction Time

Fig. 3 shows the effect of reaction time on COD changes from solid waste leachate (reaction time= 10, 30, 40, 50, 60 min, initial COD = 44156 mg L⁻¹, pH=3, reaction time = 30 min).

Figure 2. Effect of H₂O₂ dose on COD changes from solid waste leachate (H₂O₂ dose= 0.01, 0.02, 0.03, 0.04 molL⁻¹, initial COD = 4100 mg L⁻¹, pH=3, reaction time = 30 min).

Figure 4. Reaction rate of COD changes from solid waste leachate (reaction time= 10, 30, 40, 50, 60 min, initial COD=44156 mgL⁻¹, H₂O₂ dose= 0.02 molL⁻¹).

Error in Solid Waste Leachate COD Values Due to H₂O₂

To confirm the existence and range of H₂O₂ interference on the COD values, COD analysis was performed using different concentrations of H₂O₂. Results show that the existence of H₂O₂ always led to COD overestimation and its amount was proportional to the H₂O₂ concentration. In this study overestimation ratio in solid waste leachate (ΔCOD) was 0.49 mg of COD per mg of H₂O₂. But according to the study by Lee et al, ΔCOD was estimated 0.52 mg of COD per mg of H₂O₂. It seems that H₂O₂ interference and existence of non-

Reaction Kinetics

Obtained results from reaction kinetics of COD removal from solid waste leachate demonstrated that COD removal follows first-order kinetics. In this study, K COD removal under H₂O₂ was 0.0029 min⁻¹ (Fig.4). Also previous study confirms our results. For example according to Asgari et al.
organic in solid waste leachate are led to reduction of COD removal [5]. Also during this research average of COD after reaction, COD before the reaction, removed COD and false COD was 56206, 40650, 26707.57 and 13943 mg/l respectively (Fig.5). This remove shows that amount of COD removal has been very low. With regard to reports of mixed waste chemicals existed in solid waste leachate, it seems, besides residual H₂O₂ other factors such as Chloride, Bromide, Iodate, 2 valances Ferric, sulfide and manganese are led to interference and errors in the COD test. In fact, these factors are resulted in false COD [6].

Authors announce that is not any competing interest.

AUTHORS’ CONTRIBUTION
Chavoshani was director of this study, Rostami, Golzar, and Gholinia conducted it.

FUNDING/ SUPPORTS
Gonabad University of Medical Sciences supported of this study with code of 93/64

ACKNOWLEDGEMENT
The authors would like to thank Gonabad University of Medical Sciences for technical and financial support of this work.

REFERENCES