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ABSTRACT 
Wastewater sludge typically contains large amounts of water and organic materials; therefore, its stabilization and 

dewatering is of particular importance. In this study, Fenton oxidation process is used for stabilization and 

dewatering of sludge in the output of a wastewater treatment plant. To evaluate the sludge stabilization and 

dewatering, specific resistance to filtration (SRF), volatile organic compounds (VSS), total suspended solids (TSS), 

soluble chemical oxygen demand (SCOD) and heterotrophic bacteria were measured. During the experiment, the 

optimal values of various parameters such as pH (2-9), hydrogen peroxide (0.015- 0.18mol/L), Fe
2+

 (0.008- 

0.1mol/L) and time (5 - 60 minutes) for optimum sludge dewatering and stabilization were investigated. The results 

showed that the highest percentages of SRF reduction and removal rates of SCOD, VSS and TSS were 99.48, 61, 

42, and 41 percent respectively. These results were obtained in optimum pH 5, 0.05 mol/l  Fe
2+

, 0.12 mol/l hydrogen 

peroxide, and the retention time of 15 minutes. The removal rate of heterotrophic bacteria increased with increasing 

dose of hydrogen peroxide, so that a removal rate of 84 percent was observed at a dose of 0.18 mol/l. In general, 

Fenton process can reduce volatile organic materials and chemical oxygen demand of the sludge resulting in its 

significant stabilization and dewatering. In general, Fenton process can reduce volatile organic materials and 

chemical oxygen demand of the sludge resulting in its significant stabilization and dewatering. 
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INTRODUCTION 
Wastewater sludge is a by-product of wastewater 

treatment in wastewater treatment plants [1] and 

include metals, macronutrient and micronutrient, 

trace elements, organic pollution, microorganisms 

and various parasites eggs [2]. In recent decades, 

there has been increasing focus on the treatment and 

control of large quantities of sludge produced and the 

negative effects that may be associated with the 

disposal of sludge in the environment [1]. Sewage 

sludge is a complex mixture including of inorganic 

compounds, microorganism, certain undigested 

materials and moisture [3]. In addition, the presence 

of pathogens in sewage sludge is really dangerous for 

the environment and can create serious problems 

related to health [4]. Treatment and disposal of 

sludge generated in the process may account for up to 

60% of the total operation expenses [5]. Wastewater 

sludge contains about 94-99% water and its 

dewatering is the most challenging and expensive 

parts of the wastewater treatment plants [6]. Sludge 

dewatering significantly depends on sludge 

properties, such as particle size, extracellular 

polymeric substances, etc. [7, 8]. Dewatering is very 

important due to the reduction volume of sludge and 

reducing the cost of transferring and disposing of the 

subsequent sludge processing [9]. As a result, 

treatment of large amounts of sludge  is one of the 

basic requirements of wastewater treatment plant and 

accounts for much of the costs related to treatment 

[10]. New methods such as microwave conditioning, 

electrolysis, and chemical oxidation have been 

developed to disrupt extracellular polymeric 

substances (EPS) or to release the bound water, 

which both increase sludge dewaterability. Pre-

treatment using Fenton and Fenton-like processes 

have served as alternative approaches for sludge 

conditioning [11-17]. In recent years, the advanced 

oxidation techniques have been used a lot in order to 

improve sludge conditions such as dewatering and 

remove the content of organic sludge, which causes 

the release of heavy metals from the sludge clots. 

Among the various processes of advanced oxidation 

using Fenton process is a good way because of the 

low response time, utilization of the coagulation 

process and flocculation, non-toxic compounds, and 

the possibility of using it in a different scale [18]. 
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Pretreatment by Fenton reduces the amount of 

sludge, increases the biodegradability of biological 

sludge, and can lead  to a decrease in volatile solids 

and an increase in the biogas [19, 20]. The effects of 

Fenton treatment largely depend on reaction 

conditions such as the H2O2 and Fe
2+

 concentrations, 

and pH value [21]. 

Previous studies have rarely investigated stabilization 

and dewatering of a mixture of primary and 

secondary sludge simultaneously. Thus, the aim of 

this study was the simultaneous investigation of 

sludge dewaterability, degradation of organic 

materials in the sludge, and elimination of 

microorganisms from wastewater sludge using 

Fenton process. 

 

MATERIALS AND METHODS 
Sludge properties 
Samples were taken from sludge output of Shiraz 

wastewater treatment plant (a mixture of primary and 

secondary sludge), which were designed and 

collected using activated sludge method and stored at 

4 °C in polypropylene containers.  

Laboratory methods 
In this study, the effects of parameters such as pH, 

reaction time, Dosage of H2O2 and Fe
2+

 were 

investigated. To determine the amount of oxidation 

and sludge stabilization, soluble chemical oxygen 

demand (SCOD) and the removal of heterotrophic 

bacteria (HPC) were tested. At each stage, constantly 

keeping all the variables and changing one variable, 

the optimal amount of each variable was determined. 

the First, 100 ml of the sample was poured in a 250 

mL container and the pH was set to desired values (2, 

3, 5, 7 and 9), Fe
2+

 (0.008, 0.02, 0.03, 0.07, 0.09 and  

0.11 mol/l) was added to the sludge and the Fenton 

reaction was launched to adding H2O2 (0.01, .029, 

.058, 0.12, 0.15 and 0.18 mol/l) at room temperature, 

to evaluate sludge stabilization and dewatering. To 

have uniform materials, sludge samples were 

continuously mixed by a shaker for specific reaction 

periods (5, 15, 30, 45 and 60). To provide Fe
2+

 and 

H2O2 in the Fenton reaction, FeSO4.7H2O and H2O2 

solution with a weight percentage of 30% as Fenton 

reagent were used. Normal sulfuric acid and sodium 

hydroxide were used to set the pH. All materials such 

as sulfuric acid and hydrogen peroxide were 

purchased from Merk. The 42 Whatman filter paper 

was used. The experiment was repeated twice to 

control the errors. 

Analysis 
Sludge cake was dried at 105 °C for 24 hours and 

then the weight difference before and after drying 

was measured as the amount of sludge water. Sludge 

stabilization and mineralization were done via 

determining the VSS/TSS ratio. The amounts of 

SCOD, VSS, TSS and HPC were measured by 

standard methods [22]. Vacuum filtration method 

was used to measure SRF [23]. In this method, 100 

ml of the sample was poured into standard Buchner 

funnel equipped with filter paper and the sample was 

filtered at pressure of 75 Kilopascal. Finally, the SRF 

value was determined by creating a volume-time.  

 Sludge filtration capability was determined based on 

the following formula (mkg-1): 

 
Where, SRF = specific resistance of filtration, 

(m/kg); P = pressure of filtration (N/m
-2

); A = area of 

filter (m
2
); b = slope of filtrate discharge curve (sm

-

6
); µ = viscosity of the filtrate (N.s/m

2
) and w = 

weight of cake solids / volume of filtrate (kg/m
-3

). 

 

RESULTS AND DISCUSSION 
The basic description of sludge  
Sludge used for the experiments was the raw sludge 

which had gone through a biological process. Some 

information about the raw sludge is presented in 

Table 1. 
Table 1: Characteristics of raw sludge taken from Shiraz 

wastewater treatment plant 
Mean Max. Min. Unit parameter 

96.06 96.83 95.29 ]%[ Hydration 

12.4×103 16×104 88×103 [m·kg-1] SRF 

6.31 6.90 5.73 [pH] Reaction 

35.55 39.42 31.69 [g·L-1  ] TSS 

24.41 31.54 17.29 [g·L-1  ] VSS 

4455 5200 3710 [mg L-1] COD of 

Filtrate 

1146  × 
105 

1225 × 
105  

1067 × 
105 

 Cfu/ml HPC 

6.625 11.040 2.210 [g·L-1  ] TDS 

 

The effect of pH on sludge dewatering and 

stabilization 
Fig. 1 indicates the effect of pH on sludge samples in 

reaction time of 30 min, 0.058 mol/l hydrogen 

peroxide and 0.03 mol/l Fe
2+

. As showed in the 

figure, at pH 5, maximum removal efficiency of 

SCOD, VSS, TSS and maximum reduction of SRF 

obtained 26, 21, 20 and 53 percent respectively. In 

alkaline conditions, the formation of OH radicals is 

prevented due to Fe
3+

 conversion into Fe(OH)2 

deposits. In addition,  research shows that the 

oxidative potential of OH radicals decreases with 

increasing pH [24]. Therefore, at pH more than 5, 

due to instability of hydrogen peroxide and its 
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conversion into water and oxygen, the removal rate is 

reduced [25]. At pH less than 3 decomposing organic 

matter is reduced due to a decrease in free iron ions 

in the solution. This can be due to formation of the 

Fe3+ ions and buffering or the precipitation of oxy-

hydroxy ferric in the reaction environment. 

Theoretically, at a very low pH (less than 2.5), the 

formation of Fe(H2O)
2+

 which reacts with hydrogen 

peroxide very slowly, can reduce the amount of 

hydroxyl radicals and thus reduces the efficiency of 

the process [26] . 

In this study, the effect of pH alone without adding 

Fenton reagents to the sludge was also studied. In this 

situation, dewatering was not changed significantly. 

He et al. investigated activated sludge dewatering via 

acid treatment and concluded that the amount of 

dewatering does not improve significantly via 

pretreatment with acid [27]. There are not the 

convincing conclusions on the optimum pH for the 

oxidation with Fenton. For example, Lu et al. 

claimed that pH values ranging from 2.5 to 7.0 have 

no significant effect on sludge dewatering that 

modified with Fenton process [28].On the other hand, 

Mo et al. reported that the amounts of optimum pH 

are for modifying sludge 3 [12]. Also Zhao et al. 

found that sludge dewatering is better at pH= 4-5. 

This can be attributed to the release of metal ions 

such as iron and aluminum, which improve the 

sludge flocculation [13]. 
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Fig. 1: The effect of pH on removal of SCOD, VSS, and 

TSS and reduction of sludge SRF (at retention time= 30 

minutes, Fe2+ = 0.03 mol/l and hydrogen peroxide= 0.058 

mol/l). 

The effect of time on sludge dewatering and 

stabilization  

Low reaction time facilitates the operation and 

reduces the reactor volume and the related costs. In 

order to determine the best time and its effect on the 

Fenton process, tests were performed at different 

retention times of 5, 15, 30, 45, and 60 minutes, 

Fe
2+

= 0.03 mol/l, H2O2= 0.058 mol/l, and pH=5. The 

results showed that dewatering improved at lower 

times, but with the passage of time, it showed no 

significant change. As shown in Fig. 2, maximum 

removal efficiency of SCOD, VSS, TSS and 

maximum reduction of SRF was 43, 30, 28 and 61.66 

percent respectively which occurred in retention time 

of 15 minutes, which indicated that sludge was easy 

to be dewatered and stabilized. Thus, the optimal 

reaction time was selected to be 15 min. In advanced 

oxidation reactions other than Fenton, hydroxyl 

radical produces continuously. However, in Fenton 

method, high production of hydroxyl radical occurs 

in the first few minutes of the reaction [29]. 

Therefore, according to the figure, increasing time 

more than 15 minutes did not significantly affect 

SCOD, VSS and TSS removal rates. Tony et al. 

showed that Fenton method rapidly oxidizes part of 

the organic matter in the sludge flak and increases 

sludge dewatering capacity at low reaction time [13]. 

Mo et al. also showed that the Fenton reaction time 

can be reduced to 5 minutes [12]. 
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Fig.2: The effect of time on removal of SCOD, VSS, and 

TSS and reduction of sludge SRF (pH=5, Fe2+ =0.03 mol/l 

and hydrogen peroxide= 0.058 mol/l). 

The effect of H2O2 
Figure 3 (a and b) indicates the effect of different 

concentrations of H2O2 on the removal of SCOD, 

VSS, and TSS, at pH 3 and 5, Fe
2+

=0.03 mol/l and 
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t=15 minutes. As Fig. 3a shows, removal efficiency 

increased with an increase in hydrogen peroxide 

dose. The highest removal efficiency occurred at a 

hydrogen peroxide dose of 0.12 mol/l, but higher 

doses of H2O2 did not have a significant effect on the 

removal efficiency. Fenton process produced active 

hydroxyl radicals which attack and destroy organic 

matters. The amount of H2O2 directly affects the 

hydroxyl radical production and plays a critical role 

in sludge dewatering [7, 23, 30]. Thus, when H2O2 

concentrations increased from 0.015 to 0.12 mol/l, 

the removal rate of SCOD, HPC, TSS and VSS from 

the sludge refined by Fenton reached 55, 84, 29 and 

31 percent respectively and sludge dewatering 

increased to 96.72 percent. As showed in Fig. 3a, the 

lower SRF indicated the higher sludge dewaterability. 

At the beginning, the SRF decreased obviously with 

the increase in H2O2 dosage, but later there was no 

significant change. The minimum SRF was achieved 

at the H2O2 dosage of 0.12 mol/L. Thus, the sludge 

became easy to be dewatered at the H2O2 dosage of 

0.12 mol/L. At high levels of hydrogen peroxide, due 

to consumption of hydroxyl radicals, the removal 

efficiency decreased based on reactions 1 and 2[31]. 

 

 
Thus, even when the H2O2 dose increases, as the 

Fenton reaction reaches an equilibrium, the Fenton 

oxidation efficiency remains unchanged [32]. Also, 

when OH increases, Fe
2+

 converts into Fe(OH)2, 

while the high concentration of H+ prevents the 

formation of  FeOOH
2+

 and OH
.
 This reduces Fe

2+
 

concentration resulting in decreased Fenton oxidation 

efficiency [32, 33]. An important factor in sludge 

stabilization is reducing the amount of 

microorganisms. To this end, Heterotrophic bacteria 

(HPC) were used. As showed in Fig. 3, the HPC 

removal rate increases with increasing doses of 

hydrogen peroxide so that at the level of 0.18 mol/l 

hydrogen peroxide, the removal rate is %83. This can 

be attributed to the reaction of free hydroxyl radicals 

with structural particles of the cells and damage to 

biological structures. These findings are consistent 

with that of Dębowski et al. study on using Fenton 

for raw sludge disinfection [34]. 

The effect of Fe
2+

on sludge stabilization and 

dewatering  
Fig. 4 shows the effect of different concentrations of 

Fe
2+

 on the removal of SCOD, VSS, TSS and 

reduction of SRF. As showed in this figure, the 

highest removal efficiency of VSS, TSS and SCOD 

was 41, 42 and 61 percent respectively and occurred 

in Fe
2+

 concentration of  0.05 mol/l. SRF also 

reduced by 99.48 percent. But, beyond this 

concentration. Fe
2+

 concentration had no effect on 

removal efficiency. The concentration of Fe
2+

 ions 

has a significant effect on the efficiency of the Fenton 

process. In the absence of Fe
2+

 ions, hydroxyl 

radicals are not formed; therefore, the concentration 

of Fe
2+

 ions increases the production of hydroxyl 

radicals and causes clotting [35]. In addition, Fe
2+

 

acts as a catalyst in Fenton reaction that leads to 

production of more hydroxyl radicals. Organic 

material of microorganisms and minerals in the 

sludge prevents the Fenton oxidation cycle; therefore, 

enough amount of Fe
2+

 is required for the reaction 

[32]. 

In technical applications usually iron in fewer 

concentrations is used than H2O2 to prevent the 

formation of large amounts of iron sludge [36]. At 

the H2O2/ Fe
2+

 ratio of 2.26, sludge dewatering 

reaches the highest value, but did not change 

significantly beyond that level. Buyukkamaci et al. 

found H2O2 / Fe
2+

 ratio of 1.2 as the optimum ratio in 

Fenton process[11]. When Fe
2+

 is more than H2O2, 

Fenton reagent is most inclined to chemical 

flocculation after oxidation. Therefore, improvement 

in sludge dewatering is mainly attributed to chemical 

flocculation [12]. On the other hand, based on 

reaction 3, excessive Fe
2+

 leads to consumption of 

hydroxyl radicals which reduce the removal 

efficiency [37] . However, H2O2 dose is the most 

important factor affecting the decomposition of EPC 

and microbial cells. 
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Fig. 3: The effect of different concentrations of H2O2 on 

removal of SCOD, VSS, and TSS and reduction of sludge 

SRF (a: pH =5 and b: pH= 3, Fe2+= 0.03 mol/l and t =15 

min). 
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Fig. 4: The effect of  Fe2+ on the removal of  SCOD, VSS, 

TSS (pH = 5, Fe2+= 0.07 mol/l, and  t = 15 minutes). 

 

CONCLUSION 
In this study, simultaneous dewaterability and 

stabilization of wastewater sludge via Fenton was 

investigated. The results showed that sludge 

dewatering significantly improved in lower reaction 

times. Under optimal conditions of pH=5, reaction 

time=15 minutes, and H2O2 and Fe
2+

, concentrations 

of 0. 12 and 0.05 mol/l, SRF reduced by 99%. Thus, 

according to the results, we can say that since the 

Fenton process acted as an antioxidant and 

anticoagulant and destructed extracellular polymers, 

was effective in sludge dewatering and could 

significantly increase removal of microorganisms 

(84%) and stabilization of organic matter (40-60 

percent). However, it is recommended that further 

studies be carried out to find more economical 

methods and compare them with the biological 

methods. 
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